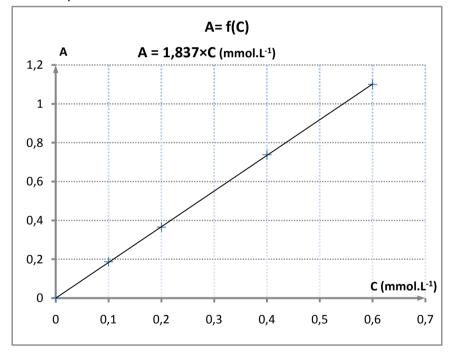
Exercice n°1.Dosage d'une solution de colorant

Le Lugol est une préparation vendue en pharmacie constituée de diiode I₂ dissous dans une solution aqueuse d'iodure de potassium.

Pour doser une telle préparation élaborée dans une pharmacie, on procède à un dosage spectrophotométrique par étalonnage. Pour cela, on prépare diverses solutions étalons de concentrations en diiode, C_i , connues, on mesure leurs absorbances A_i à une longueur d'onde donnée et on trace $A_i = f(C_i)$. La mesure de l'absorbance d'une solution diluée de *Lugol* permet d'en déduire la concentration cherchée.

On dispose de quatre solutions étalons S_1 , S_2 , S_3 et S_4 de concentrations C_1 , C_2 , C_3 et C_4 dont mesure l'absorbance avec un spectrophotomètre à $\lambda = 540$ nm. Les résultats obtenus sont présentés dans le tableau ci-dessous :


C_i (mmol. L ⁻¹)	0,100	0,200	0,400	0,600	
A_i	0,187	0,365	0,738	1,100	

La solution commerciale est diluée cent fois ; l'absorbance de la solution S ainsi obtenue, mesurée à λ = 540 nm vaut A_s = 0,725

1. La solution de diiode est de couleur jaune. Dans quel domaine de longueur d'onde se situe vraisemblablement le maximum d'absorption?

Jaune = Rouge + vert ; le diiode absorbe la couleur complémentaire donc le bleu.

2. Vérifier que les solutions de diiode suivent la loi de Beer-Lambert.

La courbe représentant A en fonction de C est une droite passant par l'origine donc A et C sont proportionnels. Les solutions de diiode suivent donc bien la loi de Beer-Lambert. A = kC L'équation de la droite est :

 $A = 1.837 C \text{ (mmol.L}^{-1}\text{)}$

3. En déduire la concentration de la solution S, puis celle de la solution commerciale. Comparer valeur trouvée à celle annoncée par le pharmacien sur l'étiquette : diiode à 10,0 g. L⁻¹.

La concentration de la solution S est donc $C_S = \frac{A_S}{k} \rightarrow C_S = \frac{0.725}{1,837} = 0.395 \text{ mmol.L}^{-1}$

La solution commerciale qui a été diluée 100 fois a donc une concentration de 39,5 mmol.L⁻¹. Le titre massique est donc $t = M(I_2) \times C \rightarrow t = (2 \times 127) \times 39,5 \times 10^{-3} = 10,0$ g. C'est la valeur annoncée par le pharmacien.

 0809 TS_2 1/4 DM_3

Exercice n°2. Décomposition de l'éthanal

En phase gazeuse, l'éthanal CH₃CHO se décompose à température élevée suivant d'équation :

$$CH_3CHO(g) = CH_4(g) + CO(g)$$

La cinétique de cette réaction a été étudiée en introduisant dans un récipient de volume V constant, préalablement vidé, une quantité n_0 d'éthanal, puis en mesurant à température constante la pression totale p_t dans le récipient en fonction du temps. Une étude conduite à 507 °C donne les résultats suivants :

t (min)	0	5	10	15	20	30	40	50	60	70	80	90	100
p _t (kPa)	24,00	28,00	30,85	33,00	34,67	37,09	38,77	40,00	40,95	41,69	42,29	42,79	43,20

1. Exprimer la quantité totale de matière gazeuse n_{gaz} à un instant t en fonction de n_0 et de l'avancement x(t).

équation de	e la réaction	CH ₃ CHO _(g) =	= CH ₄ (g)	+ CO _(g)	
état du système	avancement	n _{CH₃CHO}	n _{CH4}	n _{co}	
état initial	0	n_0	0	0	
état intermédiaire	x	$n_0 - x$	x	x	

$$n_{gaz} = n_{CH_3CHO} + n_{CH_4} + n_{CO} = (n_0 - x) + x + x = n_0 + x(t)$$

2.

a. Exprimer l'avancement x(t) en fonction de la température T du volume V et des pressions $p_t(t)$ et p(0). Equation des gaz parfaits : $p_t(t)V = \int n_0 + x(t) \int RT = n_0 RT + x(t)RT$

$$A \ t = 0 \ s : p(0)V = n_0 RT; \ donc \ p_t(t)V = p(0)V + x(t)RT \ soit \ p_t(t) = p(0) + \frac{x(t)}{V}RT$$

$$\frac{x(t)}{V} = \frac{p_t(t) - p(0)}{PT}$$

b. Pourquoi est-il nécessaire de maintenir constante la température pour suivre cette réaction par manométrie ?

Pour que $p_t(t)$ soit proportionnel à n_{gaz} , il faut T et V constants.

c. Exprimer numériquement le rapport $\frac{x(t)}{V}$ en fonction de $p_t(t)$. En déduire les concentrations des différentes espèces pour t = 50 min.

$$p_{t}(t) = p(0) + \frac{x(t)}{V} RT \rightarrow p_{t}(t) - p(0) = \frac{x(t)}{V} RT \rightarrow \frac{x(t)}{V} = \frac{p_{t}(t) - p(0)}{RT}.$$

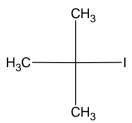
$$[CH_{3}CHO_{(g)}](t) = \frac{n_{0} - x}{V} = \frac{n_{0}}{V} - \frac{x}{V} = \frac{p(0)}{RT} - \frac{p_{t}(t) - p(0)}{RT} = \frac{2p(0) - p_{t}(t)}{RT}.$$

$$[CH_{4}_{(g)}] = [CO_{(g)}] = \frac{x(t)}{V} = \frac{p_{t}(t) - p(0)}{RT}.$$

•
$$[CH_3CHO_{(g)}](50) = \frac{2p(0) - p_{\uparrow}(50)}{RT} = \frac{2 \times 24,00 - 40,00}{8,314 \times 780} \times 10^3 = 1,234 \text{ mol.m}^{-3} = 1,234 \text{ mmol.L}^{-1}$$

$$[CH_{4(g)}](50) = [CO_{(g)}](50) = \frac{p_{t}(50) - p(0)}{RT} = \frac{(40,00-24,00) \times 10^{3}}{8,314 \times 780} = 2,467 \text{ mol.m}^{-3}$$

• $[CH_{4(g)}](50) = [CO_{(g)}](50) = 2,467 \text{ mmol.L}^{-1}$


 0809 TS_2 2/4 DM_3

Exercice n°3. Hydrolyse du 2-iodo-2-méthylpropane

On se propose d'étudier la cinétique de la réaction totale entre l'eau et le 2-iodo-2-méthylpropane. Pour cela, on place sur un agitateur magnétique un bécher contenant 80 mL d'un mélange d'eau et de propanone, on y introduit la cellule conductimétrique, puis on ajoute 20 mL d'une solution de 2-iodo-2-méthylpropane de concentration apportée C = 100 mmol.L⁻¹ tout en déclenchant le chronomètre.

1.

a. Écrire la formule du 2-iodo-2-méthylpropane. Il sera par la suite noté plus simplement RI.

b. L'équation de la réaction qui se produit peut s'écrire :

$$RI_{(\ell)} + H_2O_{(\ell)} = ROH_{(aq)} + H^+_{(aq)} + \Gamma_{(aq)}$$

Justifier l'emploi de la conductimétrie pour suivre son déroulement.

Initialement quasi nulle la conductivité augmente lors de l'avancement de la réaction car il se forme des ions $H^t_{(aq)}$ et $\Gamma_{(aq)}$

2.

a. Déterminer n_0 : quantité initiale de RI dans le mélange réactionnel.

$$n_0 = CV \rightarrow n_0 = 100 \times 20 \times 10^{-3} = 2.0 \text{ mmol}$$

b. Faire un tableau d'avancement.

équation de la réaction		$RI_{(\ell)}$	+ H ₂ O _(ℓ) =	ROH _(aq)	+ H ⁺ _(aq) -	+
état du système	avancem ent	n(RI)	n(H₂O)	n(ROH)	n(H [†])	n(厂)
état initial	0	n_0	grande	0	0	0
état intermédia ire	х	$n_0 - x$	grande	х	x	x
état final	$x_f = n_0$	0	grande	n_0	n_0	n_0

c. Expliquer pourquoi la conductance initiale G(0) du mélange n'est pas tout à fait nulle.

L'eau utilisée contient déjà des ions.

d. On rappelle que $G(t) = k\sigma(t)$ où k est la constante de la cellule *du conductimètre*, et $\sigma(t)$ la conductivité de la *solution*.

Exprimer la conductance G(t) de la solution en fonction de la conductance initiale G(0), de la constante k, de l'avancement x(t), du volume V du mélange réactionnel et des conductivités molaires ioniques λ_{H^+} et λ_{Γ} supposée connues.

$$G(t) = G(0) + k\sigma(t) = G(0) + k\left\{ \mathbf{A}_{H} + \mathbf{x} \left[H^{\dagger}(t) \right] + \mathbf{A}_{I} - \mathbf{x} \left[I^{-}(t) \right] \right\}$$

$$G(t) = G(0) + k\left[\mathbf{A}_{H} + \mathbf{x} \frac{\mathbf{x}(t)}{V} + \mathbf{A}_{I} - \mathbf{x} \frac{\mathbf{x}(t)}{V} \right] = G(0) + k\left[\mathbf{A}_{H} + \mathbf{A}_{I} - \mathbf{A}_{I}$$

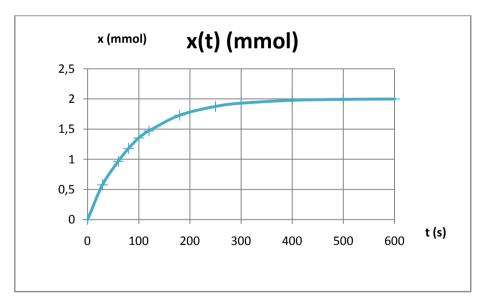
3.

a. Exprimer G (∞) en fonction de **G(0)**, **k**, **n**₀, **V** et des conductivités molaires ioniques λ_{H^+} et λ_{Γ} .

$$G(\infty) = G(0) + \mathsf{k} \left\{ \Lambda_{\mathcal{H}}^{+} \mathsf{x} \left[\mathsf{H}^{+}(\infty) \right] + \Lambda_{\mathcal{I}} \mathsf{x} \left[\mathsf{I}^{-}(\infty) \right] \right\} = G(0) + \mathsf{k} \frac{n_{0}}{\mathsf{V}} \left[\Lambda_{\mathcal{H}}^{+} + \Lambda_{\mathcal{I}}^{-} \right]$$

b. Établir que
$$x(t) = \frac{G(t) - G(0)}{G(\infty) - G(0)} \times n_0$$

$$G(\infty)$$
 - $G(0)$ = $k \frac{n_0}{V} \left[\Lambda_H^{\dagger} + \Lambda_I^{-} \right]$


$$G(t) - G(0) = k \frac{x(t)}{V} [\Lambda_H^{+} + \Lambda_I^{-}]$$

$$\frac{\mathcal{G}(t)-\mathcal{G}(0)}{\mathcal{G}(\infty)-\mathcal{G}(0)}=\frac{x(t)}{n_0} \rightarrow x(t)=\frac{\mathcal{G}(t)-\mathcal{G}(0)}{\mathcal{G}(\infty)-\mathcal{G}(0)}\times n_0$$

4.

a. Compléter le tableau ci-dessus, puis tracer la courbe représentant x(t).

t(s)	0	29	60	80	100	120	180	250	300	400	500	600
G(t) (μS)	3,1	245,2	408,9	498,1	571,8	620,9	729,19	790,7	813	833,2	839,8	842
x(t) (mmol)	0	0,576	0,966	1,179	1,354	1,471	1,729	1,875	1,929	1,977	1,992	1,998

b. Trouver la composition du mélange réactionnel à la date t = 200 s.

$$x(200) = 1,79 \text{ mmol} = n(ROH) = n(H^{+}) = n(T^{-}).$$

 $n(RI) = n_0 - x(200) = 2,00 - 1,79 = 0,21 \text{ mmol}$